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Abstract 
 

Modern systems are increasingly dependent on software for status monitoring, control, and safety. Software system 
safety originally evolved at a time when large software development followed a “waterfall” approach in which 
requirements definition, architecture design, coding, test, and deployment were conducted sequentially. This allowed 
time early in the program for completing several conventional system safety tasks, such as the system safety program 
plan (SSPP) and various hazard analyses. Many modern software development programs follow the Agile 
development approach, in which “sprints” are conducted, to rapidly and incrementally define the architecture, write 
code, and test it, often before all system requirements are established. Agile development does not align well with the 
conventional system safety approach.  System safety engineers applying conventional software safety will find that 
by the time they complete and obtain approval of the SSPP, developers have already completed several sprints. To 
better support modern development programs, a modified software safety approach should be developed to allow 
software contributions to hazards (causes and controls) to be identified and assessed, before the development team has 
completed the software architecture and design.  This will ensure software hazard causes are adequately mitigated and 
safety significant software adheres to the level of rigor requirements. 
 

Introduction 
 
Software safety is a fairly modern subdiscipline of system safety. The importance of performing software safety 
analyses to identify, assess, control, and accept software contributors to safety risk has continued to rise as modern 
systems have become more and more sophisticated, automated, and interconnected with other related or supporting 
systems. System automation and/or control frequently involves multiple sensors throughout the system and transfer 
of data or commands among various subsystems or control nodes. Proper system functioning obviously depends on 
all applicable data transfers and command executions being done correctly, at the right time, and in the proper 
sequence. System functions must also be controlled such that they do not continue indefinitely. To facilitate the 
development of error-free software in increasingly complex and safety-significant systems, software safety processes 
have been established to ensure thorough capturing of all software requirements, careful design of the software 
architecture, strict adherence to coding standards, and thorough testing to ensure any software errors are identified and 
eliminated. 
 
Software development processes themselves have also been evolving significantly in recent years. As discussed in the 
next section, many software development efforts in the past followed a “waterfall” approach, which was similar in 
many regards to the approach used for overall system development. The waterfall approach featured distinct software 
lifecycle phases that were each conducted sequentially – that is, each was completed in turn before transitioning to the 
next phase. For instance, a thorough effort to identify and articulate all software requirements was embarked upon at 
the beginning of the program. It was only after the requirements were essentially completed that the team would move 
on to the architecture design phase. Similarly, the software implementation, or coding, was not begun until the 
architecture was considered complete. And finally, the system would be tested with the entire suite of software when 
all the coding was complete. Conventional software safety processes, also described in the next section of this paper, 
are more suited to the waterfall software development approach. 
 
Complexities of modern systems, and their software, have led to a newer approach known as the Agile software 
development method. The Agile method is characterized by a more rapid succession of discrete efforts, known as 
“sprints,” each of which is focused on developing only a portion of the software at a time. A more thorough overview 
of the Agile method is provided in the section of this paper that follows the next section. 
 
The rapid evolution of software development from the conventional waterfall approach to the Agile method has led 
to some situations where project teams have tried to apply conventional software safety processes to an Agile software 
development effort. Conventional software safety processes are not well suited to the Agile software development 
method. In the time required for the software safety analyst to prepare a thorough and comprehensive SSPP, obtain 



customer review comments, incorporate comments, and route a final SSPP for approval signatures, the development 
team will likely have completed multiple sprints. These and other challenges are described in more detail in the section 
below, titled “Issues with System/Software Safety Processes and Agile SW Development.” 
 
Recommendations for improved software safety processes, to make them better align with the Agile software 
development method, are provided in the section below titled “Suggested Changes to System/Software Safety Process 
for Agile Development.” 
 

Typical Software Development and Software Safety Process  
 
In recent years, the Safety community made a shift from conventional system safety processes to a methodology that 
includes software safety.  This is a result of systems relying more on software and less on physical robustness.  Gone 
are the days of triple redundant computer systems with independent hardware/software backups.  Today’s space 
vehicles and soldier-toting battlefield technology does not allow for that degree of physical redundancy.  Even though 
software has become extremely complex in its use, isolation by redundant or independent computing systems cannot 
always be guaranteed. Although software has always been part of the system in System Safety, due to its complexity 
it has been shown to require additional attention.  The need for extra focus on software contributions and mitigation 
to system hazards sparked the need for the DoD Joint Software System Safety Engineering Handbook (JSSSEH) and 
commercial documents like DO 178C (Software Considerations for Airborne Systems and Equipment Certification).  
The conventional system/software safety process falls in line with earlier methods of software development.  The 
waterfall approach, for example, allows for the safety process to start and end in parallel with the system process.  See 
Figure 1.  The Agile process however, does not coincide with the system/software safety process at all.  The specific 
issues are discussed following a brief overview of the Agile software development process.   
 

 

Figure 1 — Waterfall and Safety Processes 
 
 

Overview of Agile Software Development Process 
 
The Agile Development methodology is rooted in various movements that sought to reduce waste in manufacturing 
and production. The Toyota Production System, developed between 1948 and 1975, was a precursor to what has 
become known as “lean manufacturing” (ref. 1). Lean manufacturing, in turn, emphasizes many aspects of efficient 
and effective production that have been incorporated in Agile Development. In February 2001, a concerned group that 
called themselves the Agile Alliance met at Snowbird, Utah and authored the Manifesto for Agile Software 
Development, in response to the need they perceived for “an alternative to documentation driven, heavyweight 



software development processes” (ref. 2). The Agile Manifesto articulated four key values that were expressed as 
preferences for certain aspects of software development over others (ref. 3): 
 

1. Individuals and interactions over process and tools. 
2. Working software over comprehensive documentation. 
3. Customer collaboration over contract negotiation. 
4. Responding to change over following a plan. 

 
Beyond this statement of key values, the Agile Manifesto listed the guiding principles shown in Table 1 below (ref. 4). 
 

Table 1 — Guiding Principles of Agile Development 
 

No. Principle 
1 Our highest priority is to satisfy the customer through early and continuous delivery of valuable software. 

2 Welcome changing requirements, even late in development. Agile processes harness change for the 
customer's competitive advantage. 

3 Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to 
the shorter timescale. 

4 Business people and developers must work together daily throughout the project. 

5 Build projects around motivated individuals. Give them the environment and support they need, and trust 
them to get the job done. 

6 The most efficient and effective method of conveying information to and within a development team is 
face-to-face conversation. 

7 Working software is the primary measure of progress. 

8 Agile processes promote sustainable development. The sponsors, developers, and users should be able to 
maintain a constant pace indefinitely. 

9 Continuous attention to technical excellence and good design enhances agility. 
10 Simplicity--the art of maximizing the amount of work not done--is essential. 
11 The best architectures, requirements, and designs emerge from self-organizing teams. 

12 At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior 
accordingly. 

 
In Agile Development, the software architecture is initially designed with only enough detail to allow the development 
team to begin their work; it is subsequently refined during the development process. This reflects an understanding 
that the requirements can evolve as the program matures, and the architecture must be allowed some flexibility for 
adjustment as the requirements change. Stated another way, since the main gauge of progress in Agile development 
is a working system (Principle #7 above) and the development of functionality is done incrementally, architecture is 
done incrementally to support the development. With this flexibility of the architecture comes the need for interfaces 
between system components to be loosely-coupled, so that the interfaces can be adjusted as necessary, if and when 
the architecture is modified during development. 
 
Another important aspect of Agile Development is that since the architecture is incrementally designed, 
documentation should also be written incrementally. Documentation of the architecture in Agile Development is 
viewed not so much as a measure of project completeness, but rather as a means to facilitate communication between 
the customer and development team. 
 
In Agile Development, individual requirements are expressed as a series of “user stories.” These user stories are used 
both in planning the development work to be done, and as a gauge of how much of the work has been accomplished. 
Development work is done in a succession of discrete work efforts of constant length, referred to as “sprints.” The 
duration of sprints is typically set at somewhere from 1-4 weeks. As outlined in reference 5, the process for planning 
and conducting each sprint includes: 
 

• Selection of the customer’s highest priority user stories 
• Estimation of user story points for selected user stories 
• Identification of tasks for each user story, and estimation of effort by developers 



• Elaboration of user stories, design, code, and test 
• Demonstration of a working system 
• A retrospective and improvement of the process 

 
In each sprint, the customer reviews the system and can redirect the priorities for the next sprint. Progress is tracked 
by noting the total number of user stories completed. The development team adheres to a discipline of never slipping 
a release date, but instead, slipping one or more user stories, if necessary. 
 

Issues with System/Software Safety Processes and Agile SW Development 
 
Agile Development is a marked departure from the waterfall process described earlier. In the waterfall, or Software 
Development Life Cycle (SDLC) process, it would not be uncommon for the developers to meet with the customer 
and spend a matter of months in a painstaking, back-and-forth exchange to reach agreement on a comprehensive set 
of requirements, thoroughly documented, before development work is begun. The pace and work sequence of this 
approach was well suited to the conventional system safety effort in which a major emphasis was on sequential 
completion of safety documents in a certain order. 
 
The primary issue, or “disconnect,” between conventional system/software safety processes and the Agile 
Development method is the difference in mindset between, on one hand, the Agile method that acknowledges the need 
for flexibility and the likelihood of course corrections along the way, and, on the other hand, the conventional 
system/software safety approach that generally expects a single effort to draft, get comments on, and finalize a given 
safety document, and when that document is complete, moving on to the next (with the same mindset). 
 
As noted in Figure 1 above, when conventional system safety methods were followed, planning and requirements 
definition were completed first, before proceeding with analyses, hazard identification, and hazard tracking. System 
safety planning and requirements definition are accomplished through publishing of the System Safety Program Plan 
(SSPP). Much as the waterfall software development methodology placed emphasis on a protracted effort to fully 
develop and document the software requirements before beginning work on development of the code, conventional 
system safety would typically devote all its resources at the beginning of the project to preparing the SSPP, subjecting 
it to a thorough review and comment period by the customer, incorporating customer comments, and finally routing 
it for signatures by multiple parties. This process could easily take more than a month. 
 
After completion and approval of the SSPP in a conventional system safety program, the first of the hazard analyses 
– often a functional hazard analysis (FHA) – is begun. Not only can this analysis and capturing of its results in a formal 
deliverable document take even longer than preparation and approval of the SSPP, it has the added burden or 
complication of requiring participation by potentially multiple members of the development team – most or all of 
whom it will be difficult, if not impossible, for the team to make available to support the system safety effort, because 
they are fully committed to the development effort. 
 
By the time the system safety analysts are done preparing and obtaining approval on the SSPP, as well as completing 
what might be only the first of several analyses to identify and assess hazards, the development team will probably 
have planned and completed multiple sprint cycles, likely without the benefit of System Safety’s participation or input. 
System safety analysts are often left with a feeling of being well behind on the project before they get started.  See 
Figure 2 below. 



 
 
Figure 2 — Relative Time-Phasing of Agile Development Sprint Cycles with Conventional System/Software Safety  

 
Suggested Changes to System/Software Safety Process for Agile Development 

 
As more software development programs shift in the Agile development process direction, it is time for 
system/software safety to also make a shift.  For Agile development programs, it seems necessary to tailor the safety 
process.  It is recommended to start with generic safety processes and let them grow and expand with the Agile 
processes.  This is illustrated in Figure 3 below.   
 
 

 
 
 

Figure 3 — Tailored System/Software Safety Process for Agile Development 
 
The conventional system safety process should be tailored to fit the progress of Agile methods.  Recommendations 
include the exclusion of some safety analyses (i.e., Preliminary Hazard Analysis (PHA), Fault Tree Analysis (FTA)) 
and focusing on expanding generic analyses and processes to encompass the progression of the system.  Specifically, 
the following suggestions are put forth for Agile software development projects: 
 

1. Use a Standard System Safety Program Plan (or none—just refer to MIL-STD-882).  Don’t spend 
unnecessary time creating this document.  Review MIL-STD-882E and add any additional specifications or 
regulations to the Statement of Work (SOW).   

2. Impose Generic Safety Requirements at the Onset.  This sets the tone for safety’s involvement.  It helps 
developers keep safety in the decision process. Allocate generic safety requirements for Design, Code, and 
Test activities (see JSSSEH for suggestions).  For example, for Design, impose safe state, memory, 
integrity, and fault detection type requirements.  For Code activities requirements about dead/unused code, 
storage, and other coding standards should be imposed.  For Test activities, document the safety testing and 



level of rigor (LOR) testing required so these can be accomplished in the unit level testing and planned for 
in the system testing.   

3. Initiate a Functional Hazard Analysis (FHA) at the Onset. This provides management and guidance of 
safety questions with respect to degraded operation, loss of operation, etc.  This allows the analysis to grow 
with the project instead of waiting for other typical analyses (e.g. PHA) and system documentation to be 
available.   If time permits, conduct a PHA later in the cycle. The FHA will aid in generation of safety 
significant functions and requirements which should be modified, if required, throughout the process. 

4. Conduct Several Requirements Analyses.  For Agile Development, it is more productive to perform 
several requirements analyses in contrast to using the final program documentation.  Augmenting with 
change impact analysis ensures the requirements are constantly evaluated and documented in the program 
and safety artifacts.  

5. Attend Sprint Meetings to Understand Content, Changes, Future Expectations, etc.  After each Sprint 
meeting, reevaluate the FHA and generic safety requirements.  Implement the necessary changes and 
review with System Safety Working Group (SSWG) members on a regular basis.  
 

It would be necessary to evaluate and expand the safety requirements throughout the sprint cycles.  Specific 
project/program safety requirements should be added to the generic requirements, as required, and to the program 
documentation (i.e., system specification).  The FHA should evolve into a system hazard analysis.  The hazards should 
be identified and tracked as required by MIL-STD-882E.  The safety engineering support to an Agile Development 
system should still be guided by the conventional foundation; however, it is best supported by a change in the sequence 
of events and the types of safety analyses conducted.  
 

Summary 
 

Experiencing firsthand Agile development systems has led the authors to determine that a modified safety process is 
needed for software following this type of development.  If certain safety products are pre-set at the beginning of the 
Agile process, and modified later if required, software safety can be proactive rather than in a constant reactive state.  
Generic safety requirements and program planning is the key to allowing an Agile and effective safety process.  In 
addition to preplanned requirements and analysis, modification and sequence of safety events/analysis is 
recommended to ensure software safety provides the analyses and assessments necessary to identify the safety-
significant software in terms of hazard causes and hazard mitigations.  These suggested modifications to the system 
safety process should be implemented whenever Agile software development is expected.  
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